پیشبینی جریان با استفاده از مدل ماشین بردار پشتیبان بر مبنای سری های زمانی دبی و بارش در ایستگاههای بالادست (مطالعه موردی : ایستگاه هیدرومتری تله زنگ)
Authors
Abstract:
در این پژوهش به منظور پیشبینی دبی ماهانه ایستگاه هیدرومتری تله زنگ از مدل ماشین بردار پشتیبان (svm) و آمار 10 ایستگاه هیدرومتری و 8 ایستگاه بارانسنجی بالادست آن در طول یک دوره آماری 20 ساله (1371-1390) استفاده شد. لذا در اولین گام تاثیر استفاده از سریهای زمانی دبی، بارش و ترکیبی از این دو پارامتر به عنوان ورودی و در گام بعد تاثیر تعداد ایستگاههای هیدرومتری و بارانسنجی بالادست بر نتایج پیشبینی، مورد بررسی قرار گرفت. مقایسه نتایج به کمک سه شاخص آماری ضریب همبستگی (R2)، جذر میانگین مربعات خطا (RMSE) و خطای استاندارد (SE) صورت گرفت و نتایج نشان داد که استفاده از آمار بارندگی در کنار دبی، به عنوان ورودی مدل، با ضریب همبستگی 884/. جذر میانگین مربعات خطا 41/38 و خطای استاندارد 28/0 نسبت به استفاده از آمار دبی، به عنوان ورودی مدل، با ضریب همبستگی 871/. جذر میانگین مربعات خطا 20/40 و خطای استاندارد 29/0 دقت پیشبینی را بالا برده و استفاده از سری زمانی بارندگی به تنهایی، با ضریب همبستگی 225/. جذر میانگین مربعات خطا 73/157 و خطای استاندارد 62/0 به شدت باعث افزایش خطا در نتایج خواهد شد. همچنین با افزایش تعداد ایستگاههای هیدرومتری و بارانسنجی در بالادست مدل قادر خواهد بود دبی را با دقت بیشتری پیشبینی نماید.
similar resources
استفاده از مدل های سری زمانی، شبکه عصبی و ماشین بردار پشتیبان جهت پیش بینی دبی ورودی به سد گرگان
پیشبینی مقادیر جریان ورودی به سیستم منابع آب بهمنظور آگاهی از شرایط آینده و برنامهریزی برای تخصیص بهینه منابع آب به بخشهای مختلف از قبیل شرب، کشاورزی و صنعتی امری ضروری در مدیریت منابع آب میباشد. هدف از پژوهش حاضر پیشبینی مقادیر دبی ماهانه ورودی به سد گرگان برای آینده بود. بدین منظور از دادههای هیدرومتری ایستگاه قزاقلی با دوره آماری 47 سال و سه مدل سریزمانی، شبکه عصبی و ماشین بردار پشت...
full textارزیابی مدل ترکیبی موجک – حداقل مربعات ماشین بردار پشتیبان در ریزمقیاس کردن مکانی - زمانی سری های زمانی بارش
با توجه به نیاز شبیه سازی سری های زمانی بارش در مقیاس های مختلف برای مقاصد مهندسی از یک طرف و عدم ثبت این پارامترها در مقیاس های ریز بدلیل مشکلات اجرایی و اقتصادی از طرف دیگر، ریزمقیاس کردن بارش به مقیاس مورد نظر، یک امر ضروری می باشد. در این مطالعه، برای ریزمقیاس کردن سری زمانی بارش ایستگاه های تبریز و سهند، با توجه به ویژگی های غیرخطی مقیاس های زمانی، مدل ترکیبی موجک – حداقل مربعات ماشین بردا...
full textتحلیل مقایسه ای مدل های سری های زمانی داده های دبی کل، دبی پایه و جریان سطحی (مطالعه موردی: ایستگاه هیدرومتری ارازکوسه)
full text
پیشبینی ماهانه جریان با استفاده از ماشین بردار پشتیبان بر مبنای آنالیز مؤلفه اصلی
هدف اصلی این تحقیق بررسی تأثیر انتخاب متغیرهای ورودی با استفاده از آنالیز مؤلفه اصلی (PCA) بر عملکرد مدل ماشین بردار پشتیبان (SVM) برای پیشبینی ماهانه دبی رودخانه بود. به این منظور ابتدا با استفاده از 18 متغیر ورودی به مدل SVM، دبی جریان ماهانه پیشبینی شد. سپس با استفاده از PCA تعداد متغیرهای ورودی به مدل SVM از 18 متغیر به 5 مؤلفه کاهش یافت. در نهایت با استفاده از آماره توسعه یافته توسط نویس...
full textارزیابی کارایی روشهای مرسوم و رایانه ای در بازسازی سری زمانی دبی ماهانه ایستگاه های هیدرومتری
عدم وجود آمار و اطلاعات کامل، نمیتواند مجوزی برای عدم مطالعه شرایط هیدرولوژیکی یک منطقه و پیشبینیهای درازمدت برای انجام یک پروژه آبی باشد. بنابراین پژوهشگران مختلف روشهایی از قبیل آنالیز نسبتها، فرگمنت و توماس فیرینگ را برای بازسازی دادههای ناقص دبی در ایستگاههای هیدرومتری به کار بردهاند. لذا در این پژوهش دقت روشهای مذکور با روشهای رایانهای از قبیل شبکه عصبی مصنوعی، هیبرید عصبی - ...
full textپیش بینی ماهانه جریان با استفاده از ماشین بردار پشتیبان بر مبنای آنالیز مؤلفه اصلی
هدف اصلی این تحقیق بررسی تأثیر انتخاب متغیرهای ورودی با استفاده از آنالیز مؤلفه اصلی (pca) بر عملکرد مدل ماشین بردار پشتیبان (svm) برای پیش بینی ماهانه دبی رودخانه بود. به این منظور ابتدا با استفاده از 18 متغیر ورودی به مدل svm، دبی جریان ماهانه پیش بینی شد. سپس با استفاده از pca تعداد متغیرهای ورودی به مدل svm از 18 متغیر به 5 مؤلفه کاهش یافت. در نهایت با استفاده از آماره توسعه یافته توسط نویس...
full textMy Resources
Journal title
volume 16 issue 54
pages 7- 7
publication date 2018-09-23
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023